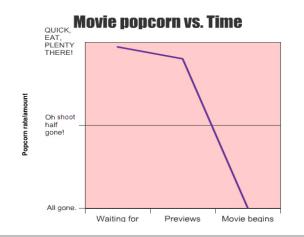
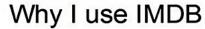
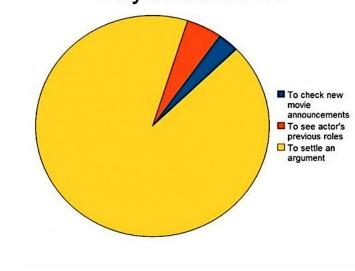
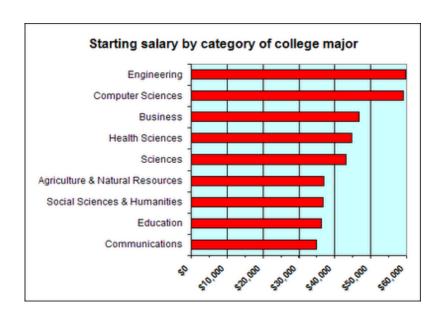

Interpreting Graphs

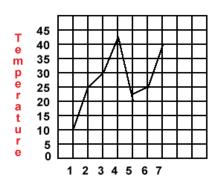

- ✓ Why bother with graphs?
- ✓ Line Graphs
- ✓ Constructing Line Graphs
- √ Bar Graphs
- ✓ Pie charts
- √Scatter plots


How to Interpret Graphs Ready for the test? Yes I am! Well. I did study I know everything. Dude... What test?


Why are graphs useful?


Graphs are a quick way to _____

Graphs provide a visual, as opposed to text.

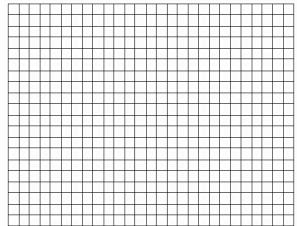


Looks like all those hours of science class paid off

This is a simple line graph charting temperature. Temperature is labeled on the "y" axis and the dates (Jan 1-7) is labeled on the "x" axis.

Average Daily Temperature for January 1-7 in Degrees Fahrenheit During the first week of January, which day was the coldest?

What was the temperature on January7th?


Which day does the temperature peak?

The respondent variable is the ______, the independent variable is ______,

Types of Graphs

Line graphs		
Bar graphs- used to		
Pie charts- used to compare values		
().		
Scatter plots- used to show and		
among a		
There are typically two variables that you "map out" when graphing.		
-The variable- what is being	_/	
-The (manipulated) variable- what is		
·	-	

Practice Constructing a Line Graph

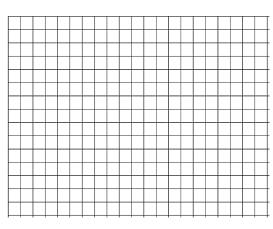
Data to graph:

Year 0 - 10 frogs Year 5 - 20 frogs

Year 10 - 60 frogs

Year 15 - 120 frogs

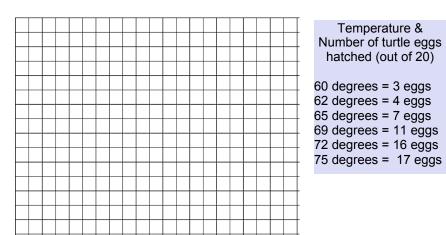
Year 20- 120 frogs


Time or trials are always placed on the x-axis

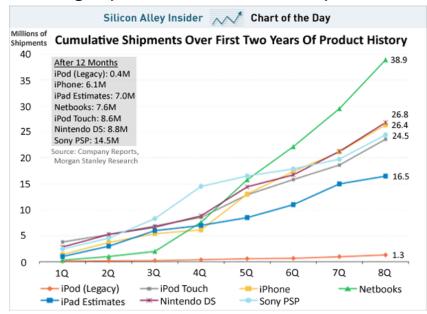
The variable goes on the Y axis.

Your numbers MUST be evenly spaced for accuracy.

What if time isn't a variable on your graph?


Usually the X axis has the independent variable (what you can manipulate or adjust) and the Y has the responding variable (what is measured/counted/observed)

Multiple carts are pushed down a track with different sized weights attached to them. The distance traveled was measured.


Weight	Distance
1 kg	150 m
2 kg	140 m
3 kg	120 m
4 kg	90 m
5 kg	70 m
6 kg	50 m
7 kg	30 m

Practice: What if the data is not so easy to place?

Before you begin, what goes on your axes?
Temperature range= 60-74
Hatchling range= 3-17

Line graphs can have multiple lines

Graphs show us trends and relationships among data.

There are generally two types of relationships that data will exhibit: and .

If one variable _____ and the other ____they share an _____ relationship.

If _____ variables _____ or ____ relationship.

<u>Inverse Relationships</u>- As one variable increases, the other factor decreases.

Examples)

As you ______, your risk for heart disease _____.

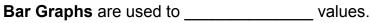
The _____, the _____ I have to reach my _____

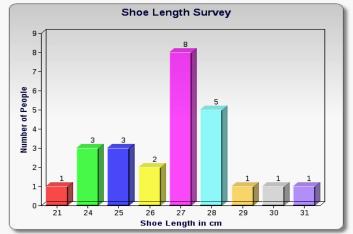
<u>Direct relationships</u> occur when the two variables increase or decrease together.

Examples:

The higher your _____, the higher your _____, rate is.

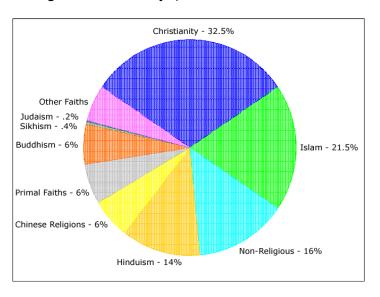
As the diameter of a pipe increases, the flow of _____

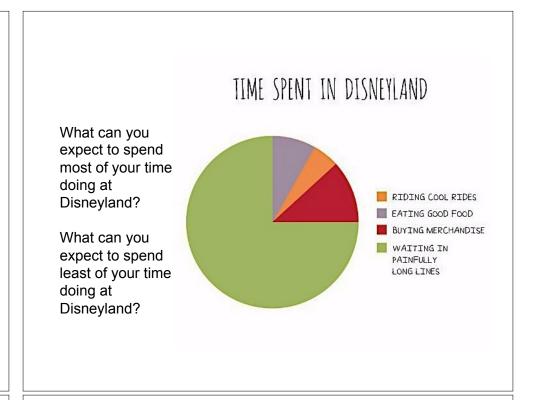

Direct or Inverse?

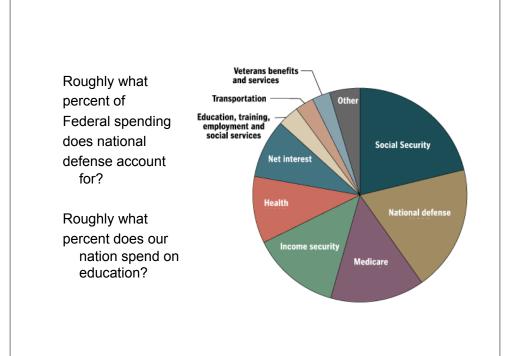

Refer to your practice line graphs.

Frogs vs. Time- direct or inverse (circle one).

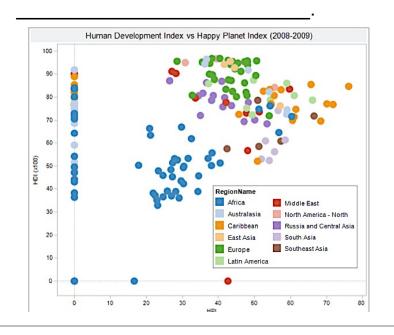
Weight vs. Distance- direct or inverse (circle one)

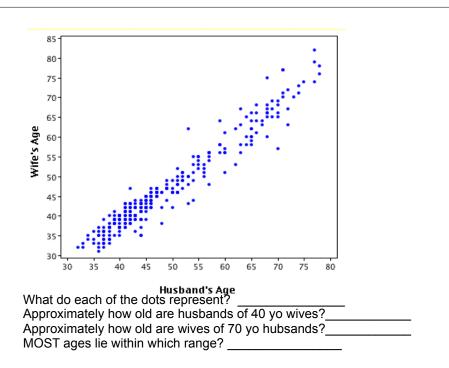







What is the most common shoe length? _____ What is the least common shoe length? ____ How many people have shoes that are 26 cm long?


Pie charts are also used to compare values (usually as a percentage but not always).



For each scenario, choose which type of graph would be best to use (line, bar, pie, or scatter plot).

- 1. To show how eating vegetables over a 10 year period can lower cholesterol. _____
- 2. To compare the leg lengths and antennae lengths of crickets. _____
- 3. To analyze the relationship between hours studying for a test and test scores among students. _____
- 4. To show the percentages of students in class that are male vs. female _____.
- 5. To compare the salaries of 4 different professions: teacher, veterinarian, software engineer, banker _____